A Schur Complement Method for Compressible Two-Phase Flow Models
نویسندگان
چکیده
Abstract In this paper, we will report our recent efforts to apply a Schur complement method for nonlinear hyperbolic problems. We use the finite volume method and an implicit version of the Roe approximate Riemann solver. With the interface variable introduced in [4] in the context of single phase flows, we are able to simulate twofluid models ([12]) with various schemes such as upwind, centered or Rusanov. Moreover, we introduce a scaling strategy to improve the condition number of both the interface system and the local systems. Numerical results for the isentropic twofluid model and the compresible Navier-Stokes equations in various 2D and 3D configurations and various schemes show that our method is robust and efficient. The scaling strategy considerably reduces the number of GMRES iterations in both interface system and local system resolutions. Comparisons of performances with classical distributed computing with up to 218 processors are also reported.
منابع مشابه
A Parallel Non-Overlapping Domain-Decomposition Algorithm for Compressible Fluid Flow Problems on Triangulated Domains
This paper considers an algebraic preconditioning algorithm for hyperbolicelliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of tr...
متن کاملNumerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کاملThe Effects of Pressure Difference in Nozzle’s two Phase Flow on the Quality of Exhaust Mixture
In the most application of nozzle with gas-liquid two-phase flow, the quality of mixture in exhaust of nozzle is the most important parameter as well as the flow velocity. On the other hand, in some industrial application, such as water injection in forced induction (turbocharged or supercharged) internal combustion engine the spray quality is the main goal of designing. In this case and for im...
متن کاملUniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations
We consider an abstract parameter dependent saddle-point problem and present a general framework for analyzing robust Schur complement preconditioners. The abstract analysis is applied to a generalized Stokes problem, which yields robustness of the Cahouet-Chabard preconditioner. Motivated by models for two-phase incompressible flows we consider a generalized Stokes interface problem. Applicati...
متن کامل